Increasing Accuracy of Combined GPS and GLONASS Positioning using Fuzzy Kalman Filter
Authors
Abstract:
In this paper, combined GPS and GLONASS positioning systems are discussed and some solutions have been proposed to improve the accuracy of navigation. Global Satellite Navigation System (GNSS) is able to provide position, velocity and time with respect to coordinated universal time. GNSS positioning is based on received satellite signals, so its performance is highly dependent on the quality of these received signals. The effect of noise and multi-path can often be large enough to produce significant errors in positioning. Satellite navigation is difficult in this situation. In such circumstances, GPS or GLONASS alone are often not able to ensure consistency and accuracy in positioning due to the absence (or low quality) of signals. The combination of these two systems is an appropriate solution to improve the situation. In positioning a receiver, one of the ways that is often used to reduce the error due to observation noise and calculation errors is Kalman Filter (KF) estimation. In this paper, some changes in the structure of the KF is applied to improve the accuracy of positioning. Process of updating KF's gain, is done in fuzzy form based on the parameters available in RINEX files, including the P code pseudo-range used as an input of the proposed fuzzy system. Simulation results show that applying a fuzzy KF based on P code pseudo-range on the available data sets, in terms of noise and blocking condition, reduces the positioning error respectively from 24 to 14 meters and 90 to 25 meters.
similar resources
Improvement in Differential GPS Accuracy using Kalman Filter
Global Positioning System (GPS) is proven to be an accurate positioning sensor. However, there are several sources of errors such as ionosphere and troposphere effects, satellite time errors, errors of orbit data, receivers errors, and errors resulting from multi-path effect which reduce the accuracy of low-cost GPS receivers. These sources of errors also limit the use of single-frequency GPS r...
full textPrecise Point Positioning Using Combined GPS and GLONASS Observations
Precise Point Positioning (PPP) is currently based on the processing of only GPS observations. Its positioning accuracy, availability and reliability are very dependent on the number of visible satellites, which is often insufficient in the environments such as urban canyons, mountain and open-pit mines areas. Even in the open area where sufficient GPS satellites are available, the accuracy and...
full textCombined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities
Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimate...
full textGPS/GLONASS System Bias Estimation and Application in GPS/GLONASS Combined Positioning
Multi-GNSS data analysis has become a new challenge with the development of satellite navigation systems. System bias is the key issue in Multi-GNSS data analysis, which has no recommended models within IGS community. We introduce the integrated data analysis model developed at the GNSS data analysis center of Shanghai Astronomical Observatory (SHAO). Based on the routine GNSS data analysis at ...
full textImproving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter
Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...
full textGPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling
Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve position...
full textMy Resources
Journal title
volume 12 issue 1
pages 21- 28
publication date 2016-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023